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Introduction

Objective: Dimensionality Reduction

I resting-state fMRI data (rs-fMRI) are too
high-dimensional for connectivity analyses

I spatial reduction can be obtained by partitioning
the brain into regions of interest where the
signal is assumed to be constant/coherent
(segregation principle)

I structural atlases and a priori de�ned nodes
are not study speci�c (neurodevelopment,
aging, disease condition . . . )

Functional (Cortical) Parcellation

I data driven
) regions adapted to data

I segmentation of connected parcels ; contrary to methods
extracting networks (ICA) and dictionary-based methods

I brain partition ) all brain coverage
(contrary to nodes/foci)

I data reduction not biased by prior knowledge

Limitation of Current Approaches

I unlikely parcel shapes
spectral clustering [1]
) overly isotropic parcels

I initialization
seed based methods (region growing [3] )
) sub-optimal solutions

I complexity
(continuous graphical models ; Lashkari et al.
2010) ) increased number of local minima

I heuristics
hierarchical (Ward) clustering [2]
) large parcels depend on small parcels shape

GraSP: Geodesic Graph-based Segmentation With Shape Prior s

Approach

I parcellation solved within a discrete
Markov Random Field framework

I parcels represented by their center node
I adapted number of parcels
I connectedness enforced by geodesic

star shape priors [5]

Parcellation Model

I max. correlation ratio between a node
and its parcel center

I cost K for introducing a new parcel [4]

Geodesic Shape Priors

I connectedness enforced by dedicated constraints
I based on the shortest distances between all pairs of nodes.
I When a node is assigned to a center, the neighbor of this node that is closest

to the center is assigned too ) star convexity ) connectedness

geodesic distances based
on Pearson distance
) shape adaptation

Geodesic distance from a node in the pre-cuneus (black cross)

Advantages

I no initialization step
I simple model (only one parameter: K )
I fast solvers [4]
I modular framework (any connectivity

measure, even asymmetric)
I versatile framework

(any graph as input, additional contraints)

Parcellations of a same rs-fMRI dataset for increasing number of parcels (decreasing parameter K )

Validation

GraSP compared with
I Ward (hierarchical) clustering
I Spectral clustering

Principle

I ground truth parcellation unknown
I reproducibility measured for

assessing methods reliability, by:
I parcellating independent groups of

subjects from a common population
I comparing the parcellations

Pre-processing

I timeseries �ltering
I motion correction

(Satterthwaite et al, 2013)
I Freesurfer registration on cortical

fsaverage5 mesh
I timeseries projection

Database and Reproducibility Measure

859 scans/subjects from the PNC
neurodevelopmental study [6]

3 age groups ...

... randomly divided in 5

for each hemisphere separately ...

... concatenation

parcellation

reproducibility via 2-by-2
comparisons (Dice index )

Dice Reproducibility

GraSP

I signi�cantly higher reproducibility with GraSP
I not at a cost of a large reduction of parcellation �t

to the data
I GraSP ran in comparable time (a few minutes,

depending on shape prior size)

Extensions / future work

3D functional parcellation

Any graph can be handled by our method
) 3D parcellation

frontal slices
18 and 33

axial slices
21 and 35

parcellation of a subject of our database

3D structural parcellation

rs-fMRI data replaced by a concatenation of
atrophy maps (w.r.t a common template)
) parcels with coherent atrophy patterns
(structural correlation )

sagittal slices
22 and 25

axial slices
21 and 32

Extraction of large coherent regions

I introduction of a virtual parcel gathering nodes
weakly connected to their parcel center

I for large K , only large coherent areas survive

I only visual cortex and language related areas
survive for large K

I open questions : novel parcellation validation ?
relation with structural and task-fMRI ?
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